Very Slow Flows of Solids

Basics of Modeling in Geodynamics and Glaciology

By

Louis A. Lliboutry

Professor of Geophysics University of Grenoble I Grenoble, France and a standard and a standard the standard between the

1987 MARTINUS NIJHOFF PUBLISHERS a member of the KLUWER ACADEMIC PUBLISHERS GROUP DORDRECHT / BOSTON / LANCASTER

Guneral equations for the Source, problem	
Preface	XIII
A aly now lad amounts	VV
Acknowledgements	AV
Notation and symbols	XVII
1 Numerical simulation of very slow flows: an overview	1
1.1 Rationale of modeling	1
1.2 Thermo-mechanical models	2
1.3 Elasticity and viscosity	6
1.4 Cohesive forces versus stresses	8
1.5 Relation between t and n: the stress tensor	9
1.6 Regular, linearized problems	11
1.7 Analytic methods	13
1.8 The finite-difference method and the finite-element method	14
1.9 Algorithm for computation	16
1.10 Programming: some precautions	16
References	18
2 Diffusion and advection of heat with a single space variable	19
2.1 The temperature equation	19
2.2 Closed form solutions without singular point	21
2.3 Closed form solutions with a singular point at the origin	22
2.4 Source functions	24
2.5 Use of Laplace transforms	27
2.6 Numerical computation	28
2.7 Moving medium, steady regime	31
2.8 Ice-sheet without bottom melting, sine oscillations of surface	
temperature	32
2.9 Response to a Dirac impulse in the surface temperature References	33 36

V

3 Rotation and strain. Invariants of stress and of strain rates	37
3.1 The finite rotation matrix	37
3.2 Angular velocity vector	40
3.3 Lagrangian and Eulerian descriptions	41
3.4 Finite strain	43
3.5 Strain rates	44
3.6 Compatibility conditions	46
3.7 Transformation of a tensor when the coordinate system is changed	47
3.8 Dilatation. The case of an incompressible fluid	49
3.9 Stress equations	52
3.10 Inertia forces and Coriolis forces. Scale models	53
3.11 Principal stresses and principal directions	55
3.12 The stress deviator	57
3.13 Invariants of stress and strain rate	58
3.14 Shear stress on any plane	60
References	62
4 Microscopic processes of creep	63
4.1 The meanagenic point of view work hardening and green	62
4.1 The inacroscopic point of view. work-nardening and creep	67
4.2 The different space scales	68
4.4 Displacement and multiplication of dislocations	70
4.4 Displacement and multiplication of dislocations	71
4.5 Distocation creep 4.6 Vacancies and self-interstitials	73
4.7 Diffusional climb of edge dislocations	75
4.8 Stacking faults and cross-slip	77
4.9 Secondary creen of a polycrystal	78
4.10 Crystal orientation and fabrics	79
4 11 Kinking and twinning	83
4.12 Diffusional creep	85
4.13 Chalmers' microcreep and Harper–Dorn creep	88
4.14 Pressure solution deformation	89
References	90
5 Viscosity as a model for rocks creeping at high temperature	93
5.1 Principles of continuum mechanics	03
5.2 Most general viscous behavior, either isotropic or anisotropic	94
5.3 Isotropic viscosity	96
5.4 Field structure of rocks	98
5.5 Pore pressure in rocks tectonic stresses and earthquakes	100
5.6 Data for rock salt	101
5.7 Data for Yule marble	103
5.8 Data for quartzites	103
5.0 Data for qualizities	105

0			41.5		400
	1	2.7	10	27	TO
-	υ	11	10	11	1.5

5.9 Hydrolytic weakening of quartz and silicates 10	5
5.10 Data for granite 10	6
5.11 Data for peridotites 10	7
5.12 Rheology of the Earth's upper mantle 10	9
5.13 Different kinds of polar ices 11	2
5.14 Data for mineral ice Ih, and for isotropic rock ice	9
5.15 Textures in glaciers and recrystallization creep of multi-maxima ice 12	2
References 12	5
6 Stokes' problems solved with Fourier transforms: isostatic rebound,	
glacier sliding	1
6.1 Overview on viscous flows 13	1
6.2 General equations for the Stokes' problem	2
6.3 Plane flow 13	4
6.4 Biharmonic functions 13	5
6.5 Fourier transforms	7
6.6 Isostatic rebound with an isoviscous asthenosphere 13	8
6.7 Application to the glacio-isostatic uplift of Fennoscandia	2
6.8 Sliding with melting-refreezing on a sine profile	6
6.9 Sliding with melting refreezing on any microrelief	0
6.10 Discussion of Nye's sliding theory	12
6.11 Sliding without cavitation of power-law viscous ice 15	15
6.12 Temperatures at the microscopic scale, and permeability of	
temperate ice 16	0
6.13 A sliding theory which takes wetness and permeability into account 16	12
References and moduling approval and to not root and tong the distance of 16	64
7 Open flow in a cylindrical channel of a power-law viscous fluid, and	
application to temperate valley glaciers	57
eferences	
7.1 General equations for steady flow, when stresses and strain rates are	
x-independent 16	57
7.2 Is secondary flow possible? 16	59
7.3 Power-law viscosity: governing equation for the stress function, and	
analytical solutions	11
7.4 Governing equation for the velocity, and singularities at the edges 17	13
7.5 Numerical computation 17	14
7.6 The inverse problem. Von Neumann's stability criterion 17	17
7.7 Kinematic waves on glaciers 18	30
7.8 Mathematical developments of the theory, and real facts 18	32
7.9 Empirical sliding laws	34
7.10 Subglacial hydraulics	36
7.11 Sliding law with cavitation	39
7.12 Stability of a temperate glacier 19	2
References 19)3

VI

8 C	oupled velocity and temperature fields: the ice-sheet problem	197
8.1	Thermal runaway	197
8.2	A pseudo-unidimensional model for the asthenosphere	201
8.3	The inverse problem for an ice-sheet: I – Balance velocities	204
8.4	The inverse problem for an ice-sheet: II – Balance temperatures in	201
	the pseudo-sliding approximation	205
8.5	Steady temperatures, abandoning the pseudo-sliding approximation	208
8.6	The forward problem: the bottom boundary layer model	211
8.7	Steady states, reversible evolution, and surges of an ice-sheet	216
8.8	Previous assessments of stability and thermal stability of the BBI	219
8.9	The global forward problem for an ice-sheet: governing equations	220
8.10	The global forward problem: computation of stable steady states	223
Refe	erences	226
9 TI	hermal convection in an isoviscous layer and in the Earth's mantle	229
841	sostitat rebornd with an investitat athenosphere.	
9.1	Buoyancy forces: general equations	229
9.2	Stability of a viscous layer uniformly heated from below	231
9.3	Marginal convective flow in an isoviscous layer	237
9.4	Convection at high Rayleigh numbers: experimental evidence	239
9.5	The boundary layer theory	241
9.6	Mathematical validity of the boundary layer theory, of the mean	
	field theory, and of the Boussinesq, isoviscous approximation	247
9.7	Mantle viscosity	251
9.8	Geothermal heat, and the location of heat sources	253
9.9	Whole mantle convection or two-layer convection?	254
9.10	Nourishment of mid-ocean ridges, small scale convection, and local	
	flows	256
Refe	erences	257
10 0	Computation of very slow flows by the finite-difference method	261
10.1	Choice of master functions	261
10.2	Difference schemes	263
10.3	Computational algorithms	267
10.4	Boundary conditions at artificial boundaries	270
10.5	Curved boundaries	272
10.6	Coupled velocity and temperature fields: flow in a single direction	1 24
	and upwind differences	277
10.7	Convective flow: staggered grids and symmetric difference schemes	278
10.8	Evolution of convection with time	281
10.9	Non-linear instabilities	282
Refe	rences	284
		201

-	-	-	
1/	11		
v			
	~ ~		

	Cor	itents
		207
11 E	asto-statics	201
11.1	Isotropic linear elasticity	287
11.2	Isothermal and adiabatic elasticity	290
11.3	General equations	291
11.4	Principle of correspondence	292
11.5	Plane strain and plane stress	294
11.6	Use of Fourier transforms for plane strain problems	296
11.7	Source fields in elasticity	299
11.8	Saint-Venant's principle; application to the screw dislocation	
	problem	303
11.9	Edge dislocations	304
11.10	Singularities at the tips of cracks and faults	308
11.11	Generalization and limitations of linear, perfect elasticity	311
Refer	rences	312
12 P	lates and layered media	313
12.1	Equilibrium of a thin plate floating on a fluid	313
12.2	Elastic thin plate	315
12.3	Lithosphere modeled as an elastic plate	318
12.4	Lithosphere modeled as an elastic-plastic plate	321
12.5	Unbending of an elastic-perfectly plastic plate	324
12.6	Buckling of a thin elastic plate embedded in a viscous medium	325
12.7	Incipient folding of a thin layer with larger viscosity than the	
	surrounding medium	327
12.8	Layered medium	328
12.9	Self-gravitating layered Earth, with lateral density contrasts	331
12.10	Poloidal and toroidal plate velocity fields, and absolute velocities	338
12.11	Driving forces acting on plates	340
Refe	rences	344
13 V	ariational theorems, and the Finite Element Method	347
13.1	Variational formulations	347
13.2	Variational formulation for a viscous body	350
13.3	Boundary conditions in variational formulation	353
13.4	Sliding of a power-law viscous medium on a smooth sine profile	356
13.5	Drag on a sphere moving in a power-law viscous fluid	359
13.6	Piecewise polynomials as trial functions: the Finite Element Method	367
13.7	Choice of the master functions, and of the finite element	370
13.8	System matrix equation, in case of non-Newtonian viscosity	372
13.9	Some hints on the techniques of the F.E.M.	373
13.10	The Galerkin method, and its application to convective heat transfer	375
13.1	I Incremental procedures, with a Laplacian point of view	376
Refe	rences enclosed to also be a	377

IX

14 T	he rigid plastic model	379
14.1	Yield criteria	379
14.2	The elastic-plastic model for large strains	382
14.3	Perfect plasticity	385
14.4	Plane strain: stress and velocity fields in deforming regions	386
14.5	Discontinuities and plastic waves	390
14.6	Punching of a semi-infinite rigid-plastic medium by a flat indenter	393
14.7	Could the solution above model punching of Asia by India?	396
14.8	Nye's flow	401
14.9	Rigid-plastic layer pressed between rough plates	405
14.10) The "perfect-plastic model" for ice-sheets	407
Refe	rences	410
15 V	iscoelasticity and transient creep	411
15.1	Objective time derivatives	411
15.2	Overview on bodies with memory	414
15.3	The Maxwell body	416
15.4	Correspondence principle for simple viscoelastic bodies	418
15.5	Peltier's theory of glacio-isostasy	422
15.6	Boltzmannian bodies	425
15.7	Different kinds of transient creep	426
15.8	Recoverable creep and anelasticity	428
15.9	Transient creep in rock salt	432
15.10) Transient creep in ice	433
15.11	Attempts to set up a rheological model	438
15.12	2 A new model, with a buffer strain and no yield strength	441
Refe	rences	443
16 H	Iomogenization, and the transversely isotropic power-law viscous body	445
16.1	Anisotropic linear rheology	445
16.2	Invariants for transverse isotropy	448
16.3	Constitutive law at large scale of temperate glacier ice	449
16.4	Microscopic models for transient creep	451
16.5	Steady creep law of a polycrystal by homogenization	455
16.6	The self-consistent method for isotropic polycrystals	458
16.7	Third-power law transversely isotropic viscosity	459
Refe	rences	463
Appe	endix I Some important numerical methods	465
I.1 N	Numerical quadrature	465
I.2 F	Runge-Kutta and predictor-corrector algorithms	465
I.3 S	Solution of tridiagonal systems	467
I.4 I	arge sets of linear equations	469

Contents **Appendix II Vector analysis** II.1 Divergence, gradient, and curl II.2 Laplacian and vector Laplacian II.3 Gradient of a vector Appendix III Cylindrical and spherical coordinates III.1 Vectorial operators, strain rates and stress equations in cylindrical coordinates III.2 Vectorial operators, strain rates and stress equations in spherical coordinates III.3 Axisymmetric flow in spherical coordinates Appendix IV Fourier and Fourier-Bessel transforms IV.1 Fourier transforms IV.2 Parseval theorem, convolutions, and filters IV.3 Fourier-Bessel transforms Appendix V Spherical harmonics and the gravity field V.1 Surface spherical harmonics V.2 Expansion of a vector field into spherical harmonics V.3 Solution of Laplace equation. Geoid height anomalies and free-air gravity anomalies V.4 Gravity anomalies due to density anomalies Appendix VI Laplace transforms VI.1 Definition and main properties VI.2 Inversion of a Laplace transform VI.3 Table of Laplace transforms

Subject index

Name index